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Abstract. HPC applications and libraries have frequently moved par-
allel data from one distribution scheme to another, for reasons of perfor-
mance. In modern times, a resurgence of interest in this data redistribu-
tion problem has emerged due to the need to relocate data distributed
across one Producer grid onto a different distribution scheme across a
Consumer grid. In this paper, we study the efficient algorithms to per-
form redistribution, and show how the best methods from the literature
are still dependent on the number of processors in both grids. We de-
scribe a new algorithm ASPEN that exploits more cyclic patterns and
relations in the distribution, is not dependent on the total number of
processors and is thus well suited for use in a workflow management sys-
tems. We describe a preliminary implementation of the algorithm within
such a workflow system and show performance results that indicate a
significant performance benefit in data redistribution generation.
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1 Introduction

Explicit data movement libraries and tools are used in HPC applications, coupled
models, ensembles and workflows, to communicate data between distinct appli-
cations through various means. In many HPC workflows, a simulation running
on M nodes (the Producer Grid or Producer) writes a large amount of data to
another job running on a (possibly) distinct set of resources (the Consumer Grid
or Consumer). Although this data movement pattern is far from new, it has be-
come a common concern in modern times due to the prevalence of data-intensive
workflows, coupled climate/environment applications and combined workflows of
HPC with Data Analytics or AI. Many approaches exist to provide data move-
ment between programs including in-situ frameworks, job couplers, in-memory
databases and file-system approaches. In this paper we describe a library for



communication of data between jobs over the interconnect fabric. Moving data
over the interconnect, direct from DRAM has the benefit that many fewer data
copies are incurred, but has the significant hurdle of needing to explicitly manage
the parallel data movement in order to move the data. This problem of explicit
data redistribution management is the focus of this paper.

A good deal of work (reviewed in Section 3) has explored the cost and ben-
efits of explicit data redistribution, typically to a different distribution scheme
within the same processor grid. While sharing many qualities with the classical
data redistribution problem, so called Producer-Consumer redistribution or M:N
node redistribution exhibits significant additional complications arising from the
fact that the two grids reside in different jobs and lack awareness of the other’s
characteristics including distribution scheme. Cray has developed a library called
the Universal Data Junction (UDJ)3 that provides the missing information and
allows distinct jobs in distinct grids to package, send and receive parallel (dis-
tributed) data over the high-performance interconnect as well as other resources
that may be preferred.

In this work, we focus on the algorithmic machinery that is required in order
to allow a Producer and a Consumer Grid to communicate the correct data, at
minimal expense in a scalable fashion. The reason to place so much emphasis
on the cost of redistribution is that the operations cannot easily be offloaded
or performed asynchronously and thus incur direct overhead on the simulation
code, which is often intolerable. In Section 3 we show that classical algorithms
and those in the literature display running times that are proportional to the
number of remote processors from the perspective of either the Producer (i.e.
remote means Consumer) or the Consumer (i.e. remote means Producer) grid.
In the Exascale era, it is expected that simulation jobs may run on millions
of compute cores. Hence, this dependence on remote grid size is intolerable. In
Section 4 we describe a new approach that exploits three types of periodicity in
cyclic data distributions, resulting in a lower complexity redistribution algorithm
and one that does not depend on remote grid sizes. In Section 5 we show the
results of our new approach versus the classical algorithm and some of the most
used and well-regarded algorithms published in the literature.

2 Background

We define the regular redistribution problem in the same way as [1] using up-
dated producer-consumer terminology: given a d-dimensional array A on a set
of Producer resources (processors and memory) Rproducer that uses some dis-
tribution scheme Dproducer we wish to move all the data to another set of re-
sources Rconsumer using some other distribution scheme Dconsumer. Dproducer

and Dconsumer represent arbitrary array element mappings across each dimen-
sion of the array.

The global array indices of A are given by G1, . . . , Gd. The set of distribution
schemes of primary interest are BLOCK, CYCLIC, 1-d BLOCK CYCLIC and k-
3 https://gitlab.com/cerl/universal-data-junction



d BLOCK-CYCLIC. Since BLOCK, CYCLIC and 1-d CYCLIC are special cases
of k-d BLOCK-CYCLIC, we study only the latter in this paper. Like [1] and [7]
we use a Local Data Descriptor approach, but we choose to ignore this repre-
sentation since it is an implementation feature not relevant to the algorithmic
descriptions. Local data sizes of A on rank p are given by Lp

1, L
p
2, . . . , L

p
d. Pro-

cessors compose a d-dimensional processor grid p1×· · ·×pd where pi(1 ≤ i ≤ d)
gives the number of processors in the grid dimension i. We will discuss two such
processor grids G producer and G consumer where the resources are assumed to be
distinct though this is not necessary. We define the mapping G2L(p, d) as the
function that maps global indices to the local indices for processor p in dimension
d, and the inverse relation L2G(p, d) mapping local indices to global indices.

The non-triviality of redistribution of cyclic data can be illustrated by the
graphic example of Figure 1. A 2-d array is divided into 2-d partitions using
some block sizes b11, b12. The blocks of this partitioning are distributed using a 2d
block-cyclic distribution scheme across a producer grid of size 4× 4. We denote
the block ownership by labelling the blocks by processor owner, round-robin
style along each dimension (Figure 1-a). We wish to redistribute the same 2-d
data across a different consumer grid of size 3 × 3 using different block sizes
b21, b

2
2 labelled similarly (Figure 1-b). For any process pair (p, c) where p is in the

producer grid and c is the consumer grid, we can overlay the global data owned
by each processor to begin to ascertain shared indices, e.g., producer process
(0, 0) (Figure 1-b) and consumer process (0, 0) (Figure 1-c) superimposed in
Figure 1-d. The intersection of the superimposed data in Figure 1-e represents
the global indices that these two processors must directly exchange over the
network (i.e., producer (0, 0) must send these indices and consumer (0, 0) must
receive these indices). The d-dimensional situation is a direct extension of the
illustrated 2-dimensional case.

Fig. 1: Example of non-triviality of data index calculations for trivial distribution
across 4× 4 producer and 3× 3 consumer grids



3 Related Work

The question of parallel data redistribution has been addressed many times, both
statically and dynamically as this question was central when dealing with the
imposed data distributions of early distributed memory programming models
such as High Performance Fortran (HPF) [4].

Extensive analysis has been performed on both the nature of block-cyclic
distribution, and its relevance to distributed memory relations as it stands as
a generalisation of both block distribution and cyclic distribution. Multiple im-
provements have been proposed taking advantage of certain characteristics of
this kind of data distribution [1, 2, 6, 7]. These solutions also focused on the mes-
sage scheduling part of array redistribution, which is out of the topic of this
paper. Petitet and Dongarra [5] described techniques for redistribution taking
into account the severe alignment restrictions induced by the architecture, as
well further treatment of the scheduling.

Thakur et al. compared different solutions and presented solutions both spe-
cific and general varying the size of the blocks but restricted to fixed size process
grids [9, 8]. The presented techniques rely either on computing the source and
destination for each element of the array outside of where it was possible to use
improvements due to any common factors between the two block-cyclic sizes.
Ching-Hsien Hsu et al. [3] also described some optimisations for specific cases
where the two block-cyclic distributions have a common factor, but with irregu-
lar number of processors. In their more generic approach [2] the authors provide
a thorough proof of the algorithm. Our version, although very close in the princi-
ple, is based on LDD usage and does not enforce the sizes to be relatively prime
numbers, allowing simpler generation of the final scalar product.

4 Data Redistribution Algorithms

From the literature, the redistribution problem has been expressed as: given
two possibly different regular distributions of data over two grids P and C with
distributions DP and DC , for each pair of processes (p ∈ P, c ∈ C) find the
intersecting elements in Dp ∩ Dc. The general idea when addressing the redis-
tribution problem is to compute the intersecting blocks of data between the
ranks. Each block is characterized by its starting index, its length, its dimension
and its destination. As stated in [7], a multidimensional distribution can be ex-
pressed as a cross-product of multiple one-dimensional distributions. Using this
approach, the general solution for a multidimensional approach is presented in
Section 4.1, while Sections 4.2, 4.3 and 4.4 focus more specifically on the required
block comparisons.

4.1 General Problem

Algorithm 1 presents the outer loop over the dimensions needed to generate the
block sets describing how to scatter the local data. In this algorithm,



ComputeIntersection refers to any of the algorithms presented in Sections 4.2,
4.3 and 4.4. The version described here considers the computation of the com-
plete redistribution. It is however possible to pass to Algorithms 2 or 3 the
remote process coordinates in order to compute the unique intersection with the
local process. As the full description of the intersecting blocks is created with
a crossproduct, any empty returned blockd would allow the algorithm to finish
early in this case.

4.2 Classical Algorithm

Algorithm 1: Base algorithm for redistribution
/* Each rank performs the following for each dimension d */
input : Producer Grid P , Consumer Grid C, Producer Distribution DP ,

Consumer Distribution DC

output: Set of blocksd

1 for d← 1 to ndims(Data) do
2 blocksd ← ComputeIntersection(P d, Cd, Dd

P , D
d
C);

3 end

This algorithm presents the naïve way of computing the intersection, by
taking each block of the given local distribution and looking for an overlap by
comparing its boundaries with those of each block of the remote distribution.
This comparison is performed for each process of the remote grid.

The total number of operations is given by

OpsClassical = D · L ·R ·N local ·Nremote (1)

where N local represents the number of local blocks and L represents the number
of processes in the local grid dimension, respectively remote blocks and remote
grid dimensions are Nremote and R.

4.3 FALLS Algorithm

This algorithm is the best version found in the literature for M:N node redis-
tribution. The same idea is expressed in [1, 7], and summarized in Algorithm 3.
Although comparing boundaries block-by-block, these articles present a huge im-
provement over the classical algorithm in terms the number of block comparisons
required.

The bounds are reduced by using the fact that the intersection of two block
cyclic distributions can be expressed as the union of some set of block cyclic
distributions, each origin being the beginning of the intersection, each block
length being the length of the intersecting block and the distance between blocks4

4 Later referred to simply as stride.



Algorithm 2: Classical Redistribution Algorithm
/* Each rank performs the following for each dimension d */
input : Producer Grid P d, Consumer Grid Cd, Producer Distribution Dd

P ,
Consumer Distribution Dd

C

output: Intrank consists of tuples (remoteRank, start, end)
1 Nlocal ← Number of local blocks owned by this rank;
2 for remote← 1 to |Cd| do
3 Nremote ← Number of local blocks on remote rank;
4 for localBlockId← 1 to Nlocal do
5 localBlock← getBlock(Dd

P , localBlockId);
6 for remoteBlockId← 1 to Nremote do
7 remoteBlock← getBlock(Dd

C , remoteBlockId);
8 Left← max(localBlock.start, remoteBlock.start) ;
9 Right← min(localBlock.end, remoteBlock.end) ;

10 if Left < Right then
11 Intrank ← Intrank ∪ (remote, Left, Right) ;
12 end
13 end
14 end
15 end

is equal to the lower common multiple of the two original strides. The result is
that it is only necessary to compare blocks within one stride S. In other words,
for each element x in the found intersection then x + n(S) is also inside the
intersection, where n is all integers for which x+ n(S) remains smaller than the
extent of the full array. Additionally, it is only necessary to compare the blocks
in the onwards direction and those already checked can be ignored.

Compared to the classical algorithm, the reduction of the bounds reduces
drastically the number of blocks to be considered when evaluating the intersec-
tion for big grids of data. The total number of operations is given by

OpsFALLS = D · L ·R · N̂ local · N̂remote (2)

where the N̂ local and N̂remote represent the reduced number of local blocks due
to searching only with one S. In theory then, Equation 2 resembles Equation 1
but in practice, N̂ and N typically differ greatly with N̂ � N .

4.4 ASPEN Algorithm Description

To improve redistribution performance, we develop a scheme that can exploit
further qualities of the periodic nature of the distributed data, and the known
relationships between adjacent blocks. We call the approach Adjacent Shifting
of PEriodic Node data or ASPEN. To illustrate the approach we first describe
the two remaining weaknesses of the existing algorithms.



Algorithm 3: FALLS Redistribution Algorithm
/* Each rank performs the following for each dimension d */
input : Producer Grid P d, Consumer Grid Cd, Producer Distribution Dd

P ,
Consumer Distribution Dd

C

output: Intrank consists of tuples (remoteRank,start,end)
1 Slocal ← local stride between blocks;
2 Sremote ← remote stride between blocks;
3 S← lcm(Slocal, Sremote);
4 Nlocal ← Number of local blocks owned by this rank;
5 for remote← 1 to |Cd| do
6 Nremote ← Number of local blocks on remote rank;
7 for localBlockId← 1 to max(Nlocal,

S
Slocal

) do
8 localBlock← getBlock(Dd

P , localBlockId);
9 firstIndex← max(0, d localBlock.start−remoteOffset−remoteBlocksize

Sremote
e);

10 lastIndex←
min(1 + localBlock.start+localBlocksize−remoteOffset

Sremote
, Nremote,

S
Sremote

);
11 for remoteBlockId← firstIndex to lastIndex do
12 remoteBlock← getBlock(Dd

C , remoteBlockId);
13 Left← max(localBlock.start, remoteBlock.start);
14 Right← min(localBlock.end, remoteBlock.end);
15 if Left < Right then
16 for disp← 0 to |Datad|

S do
17 start← Left+ disp× S;
18 end← Right+ disp× S;
19 Intrank ← Intrank ∪ (remote, start, end);
20 end
21 end
22 end
23 end
24 end

Periodicity of Remote Block Data In the algorithms 2 and 3 each local
block’s position in the global scheme is compared against multiple remote blocks
(all remote blocks in the case of Algorithm 2 and many fewer than all remote
blocks in the case of 3). In fact, the need to perform more than one comparison
ignores periodic qualities of the data distribution since the constant stride should
enable a direct periodic comparison. Consider the code in Algorithm 3 lines 11–
14. This code searches over the loop of remote blocks (Algorithm 3 line 11)
to generate all remote RemoteBlockIDs, then inside that loop remoteBlock
is extracted using getBlock(Dd

C , remoteBlockId) (Algorithm 3 line 12). Left
and Right are then both generated using various extents of localBlock and
remoteBlock (Algorithm 3 lines 13 and line 14). We can avoid this logic if we
generate a periodic offset as follows

offset← localBlock.start mod remoteBlocksize



Algorithm 4: ASPEN Redistribution Algorithm
/* Each rank performs the following for each dimension d */
input : Producer Grid P d, Consumer Grid Cd, Producer Distribution Dd

P ,
Consumer Distribution Dd

C

output: Intrank consists of tuples (remoteRank,start,end)
1 Slocal ← local stride between blocks;
2 Sremote ← remote stride between blocks;
3 S← lcm(Slocal, Sremote);
4 Nlocal ← Number of local blocks owned by this rank;
5 for localBlockId← 1 to max(Nlocal,

S
Slocal

) do
/* GTL is a global to local index conversion function. */

6 localBlock← getBlock(Dd
P , localBlockId);

7 remote← localBlock.start
remoteBlocksize mod |Cd|;

8 offset← localBlock.start mod remoteBlocksize;
9 Left← localBlock.start;

10 if localBlock.start− offset+ remoteBlocksize ≤ localBlock.end then
11 Right← min(localBlock.start− offset+ remoteBlocksize, |Datad|);
12 diff← Right− Left;
13 for ps← Left to |Datad| by S do
14 start← G2L(ps);
15 end← G2L(min(ps+ diff, |Datad|));
16 Intrank ← Intrank ∪ (remote, start, end);
17 end
18 Left← Right;
19 remote← (remote+ 1) mod |Cd|;
20 end
21 for Left to min(localBlock.end, |Datad|) by remoteBlocksize do
22 Right← min(Left+ remoteBlocksize, localBlock.end, |Datad|);
23 diff← Right− Left;
24 for ps← Left to |Datad| by S do
25 start← G2L(ps);
26 end← G2L(min(ps+ diff, |Datad|));
27 Intrank ← Intrank ∪ (remote, start, end);
28 end
29 remote← (remote+ 1) mod |Cd|;
30 end
31 Right← min(localBlock.end, |Datad|);
32 if Left ≤ Right then
33 diff← Right− Left;
34 for ps← Left to |Datad| by S do
35 start← G2L(ps);
36 end← G2L(min(ps+ diff, |Datad|));
37 Intrank ← Intrank ∪ (remote, start, end);
38 end
39 end
40 end



Offset can be seen visually in Figure 2 and appears in Algorithm 4 line 8.
The offset can be used to indirectly obtain the same information, without

doing explicit comparisons to individual remote blocks, by checking the inequal-
ity

localBlock.start− offset+ remoteBlocksize ≤ localBlock.end (3)

If condition 3 is true, then this particular local and remote block comparison
overlaps on the left-hand side of the local block. This can be understood by
seeing that the blue box of Figure 2 would be non-empty when 3 holds. When it
holds, remoteBlocksize−offset elements will be shared with processor remote.
This is how ASPEN exploits the periodic nature of remote data to avoid looking
at all remote blocks.

Properties of adjacent Sub-blocks In the case that condition 3 holds,
some number of elements are shared with processor remote. Instead of reset-
ting knowledge with respect to the rest of the local block, ASPEN exploits the
fact that if a set of global indices gl, . . . ., gr of length less than localBlockSize
map to processor remote, and if some set of global indices {gr+1, . . . ., gr+p}
with p + (r − l) ≤ localxBlockSize then localProc will also share indices
with processor (remoteProc + 1) mod |Cd|. Similarly, if several blocks of size
remoteBlockSize fit into the localBlock, then each full block will map to the
next processor in the remote grid. This approach is how ASPEN assigns con-
tiguous local sub-blocks to adjacent processors in the remote grid (adjacency
shifting). Hence the loop over remote processors in Algorithm 2 line 6 and Algo-
rithm 3 line 11, does not appear in 4. The number of operations in Algorithm 4
is given by

OpsASPEN = D · L · N̂ local (4)

Comparing this to Equation 2, we see a factor of R · N̂remote reduction in
operations. The missing R term in particular will affect scalability since each
grid will not require distinct calculations for each process element in the size
of the remote grid. Theoretically then, we expect ASPEN to scale significantly
better with larger Producer or Consumer grids involved in redistribution.

5 Results

The followings tests were run on Cray XC30 systems, each node featuring two
Intel Xeon Haswell E5–2698 with 16 cores each (2.30GHz). The benchmark
was made of MPI applications computing independently the complete redistri-
bution from one 2D grid of processes to another 2D grid, varying dimensions,
shape and size of each grid. The data was a fixed size 2D square grid of ten
thousand by ten thousand elements. Because this benchmark aimed at evaluat-
ing the redistribution performances, the computation were only executed on the
indices and no actual communication of data occurred.



Fig. 2: Illustration of Adjacent shifting and periodic relations.
offset is a periodic difference that will mean a local-remote comparison is valid for this
local block when offset is greater than a threshold. The leftmost part of local data maps
to processor RemoteProc. Adjacent data on the local processor can be known to then
map to RemoteProc+1 (and repeated for any further adjacent blocks); R represents
the Remote grid dimension.

Each case of block-cyclic to block-cyclic distribution was run many times for
all 4 methods: the naïve, the implementation of the algorithm presented in [1],
the FALLS algorithm, the ScaLAPACK redistribution computation algorithm,
and the ASPEN version5. The correctness of computed intersection was checked
by comparing with the naïve approach results, and on later work in the Universal
Data Junction library unit tests.

The main loop as show in Algorithm 1 was timed. In order to limit the
impact of system related issues, all memory needed for the creation of intersection
description sectors were pre-allocated before any measure of timing was taken.
Nevertheless, outliers may appear because of cache misses.

The process grids were made of 2 to 32 processes per grid, and the block-cyclic
sizes were one of 1024 by 1024, 256 by 256, 30 by 50 or 654 by 321. The objective
was to highlight performance behaviour in regular-to-irregular redistributions,
and the impact of partial blocks on the performance.

ASPEN showed to be very robust over disturbance induced by irregularity in
structures. The main factor of influence over the execution time are the number
of remote processes per rank. As shown in Figure 3, while the number of blocks
is scaled by a factor ≈8.5 and ≈5 in each dimension, timings scaled linearly for
ASPEN, which is not dependent on the remote number of blocks nor on remote
grid dimension while for all other algorithms scale with the square (or worse) of
grid length.

5 For all methods except classical, changing total data size does not affect the perfor-
mance



Fig. 3: Data redistributions for different blocksize and different grid sizes

The results shown in Figure 4 suggest a strong influence on performance by
the number of remote processes. Since the R term can become significant even
with small grids, we see the performance begin to rise even for modest grid
exchanges. With ASPEN, the R term is absent and this effect is limited. With
large grid sizes, we expect to see this effect becoming critically significant.

6 Conclusion and Further Work

We have demonstrated that the ASPEN algorithm can generate redistributions
more efficiently (both theoretically and in practice) when moving cyclic data
across distinct processor grids. As there is a growing requirement to perform
such redistributions across larger grids, the ASPEN algorithm is likely to be
impactful. The total cost of moving data across jobs will depend on many fac-
tors, such as cost of generating the redistribution, cost of buffering data and
message latencies. Subsequent work will study all of these factors by describing
the ASPEN algorithmic framework integrated into the Universal Data Junction
library, which will be used to send complex distributed data across production
HPC jobs. We will investigate and implement ASPEN for redistribution of data
using Gaussian grids and in complex workflow situations such as many-Producer,
many-Consumer.
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Fig. 4: Data redistributions for different blocksize and different grid sizes
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