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ABSTRACT

As the number of models created in a modular fashion increase, the need for accurate identification of real joint
dynamics rises. Since joint dynamics are a consequence of component-to-component interaction, they are only
present in the assembled state. Yet, it is in the assembled state that measuring the interface degrees of freedom
is practically infeasible. Nevertheless, the effects of the joint are present in measurements throughout the compo-
nent, i.e. the joint dynamics are observable. In this work, system equivalent model mixing is used to expand an
experimental measurement with interface degrees of freedom –either rotational or translational– extracted from a
numerical model. Subsequently, joint dynamics can be obtained by applying classic frequency based decoupling
methods. The strength of this method lies in the ability to test different interface configurations from a single mea-
surement campaign, limited only by the the actual number of sensor or impact locations. The paper shows that an
updating scheme can be used to identify joint dynamics without directly measuring interfaces.
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1 INTRODUCTION

While the influence of joints are not always prevelant, they are one of a structure’s main sources of uncertainty and unreprod-
ucability. This is in part due to the lack of understanding of joint mechanisms which essentially result in unidentified dynamic
influence. Although joints are often misstreated as an unfortunate consequences of today’s assembly-based manufacturing, they
are sometimes beneficial and in fact necessary: e.g. In turbine systems, the damping caused by friction contacts may help re-
duce the resonance amplitudes (which allows for smaller gaps between turbine blades and casing) and reduces the possibility of
instability [1]. Identifying different joints will advance the understanding of joint mechanisms, which in turn allows us to steer
towards these beneficial joint effects, rather than the unfavourable uncertainty.

In order to identify the joint, it must be observed. This is classically done by measuring physical effects or dynamic responses at
the interfaces of the assembled system. Yet, in this assembled state it is highly impractical to performmeasurements directly at, or
even near the joint. To work around this problem a simplification is often introduced; common examples of such simplifications
are reducing the DoF of the joint to a number and direction that can be measured, or by extrapolating the effects observed in the
measurable areas (such as the sides of the assembly) over the total (unmeasurable) area of the interface.

Fortunately, the dynamic effect of the joint is observed in other responses (not on the interface) combined with the effects of the
sub-components themselves. Therefore, if the effects of the components are removed, one can single out the joint dynamics. In
[2, 3], joint identification is done by assuming a two-DoF joint1 at the interface and using substructure decoupling to remove the
effects of the known components from the assembled system. Even so, information is needed at the joint itself which requires
impact locations and sensors to be placed there, referring back to the problem stated above.

1The deflection and rotation in a beam.



If, however, the DoF at the interface are not measured but calculated by means of an expansion method, these limitations no
longer hold. System Equivalent Model Mixing (SEMM) is a method based on frequency based substructuring that can be used
to expand a measurement’s DoF-set by coupling the measurement-based model to an equivalent –yet not identical– model with
the required boundary DoF [4]. Note that this model only needs to have the required DoF, and not the correct joint dynamics
(since these are provided by the measurement).

Outline of the paper

In this work, SEMM is used to expand the DoF-set of assembled-system measurements to include the boundary DoF required
to identify the joint. In section 2 the theory will be explained: The theory starts with section 2.1 which covers the Lagrange
Multiplier Frequency Based Substructuring (LM-FBS) method, including weakly-formulated interface problems in order to lay-
down the basis for SEMM as well as explain the additional steps required to perform joint identification. Once LM-FBS is
covered, the SEMMmethod will be highlighted in section 2.2. In section 2.3, an optimisation scheme is introduced which deals
with the inherent errors of SEMM expansion.

A proof of concept is given in section 3 where a simple numerical case is presented to showcase the abilities and limitations of
the method. Finally, in section 4 and 5, a critical discussion and conclusion are provided alongside a prognosis for work induced
by this concept.

2 THE JOINT IDENTIFICATION METHOD

Amultitude of joint-types exist and thus the term is used broadly. For the context of this paper however, a joint is simply a cause
of additional dynamics which exists only when two substructures are coupled. Therefore, where others would differentiate
between bolts, welds, adhesives, contact-friction, etc. in this work a joint encompasses all. This is because the method discussed
in this paper assumes that the joint is a black-box, and by removing the known component dynamics from the system dynamics
this black-box is identified. It is important to note that the linearity assumption of the frequency based methods applies to the
joint as well, and thus only linear (or linearised) properties of the joint can be identified.

Additionally, an important distinction is made between the joint and the interface. A joint is an actual source of dynamics
whereas the interfaces are the sets of degrees of freedom on each side of the sub-component between which the joint acts. For
example, in Figure 1 a schematic of a standard (read: rigid) coupling problem is depicted. The interfaces are described by the
red markers and the joint (in this case a rigid link) acts between the interfaces.

2.1 Frequency Based Substructuring: Coupling and Decoupling with a weak-formulated joint

Frequency based substructuring (FBS), or more specifically Lagrange Multiplier Frequency Based Substructuring (LM-FBS) is
a dual-method that operates in the frequency domain and in admittance space; it therefore allows the user to directly implement
measured Frequency Response Functions (FRF) [5]. Considering that performing measurements is the only way to identify the
unknown joint dynamics, it is advantageous to use methods that agree with measurement data, i.e. FRF.
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Figure 1: Component A is connected to component B via a rigid connection. The black markers represent the internal DoF ui and the red
markers represent the boundary DoF ub. Due to the rigid connection the compatibility condition states that uA

b − uB
b = 0.

The equation of motion in the frequency domain for a general dynamic component s is given as follows:

us(ω) = Ys(ω) (fs(ω) + gs(ω)) (1)

where us(ω) are the responses to the (known) external forces fs(ω) and (unknown) internal forces gs(ω) through the admittance
matrix Ys(ω). In figure 1, components A and B are shown, their equations of motion can be derived in the form of equation
(1). The implicit dependency on the frequency ω is omitted here for clarity, and will be done so for the remainder of the paper.

uA = YA (fA + gA) (2)
uB = YB (fB + gB) (3)

These can then be combined into block-form:

u = Y (f + g) where: Y =

[
YA

YB

]
, u =

[
uA

uB

]
, f =

[
fA

fB

]
, g =

[
gA

gB

]
(4)

The models are coupled via the internal forces g which act only on the boundary DoF (c.f. the red markers in Figure 1), i.e.
gi = 0. In order to derive these internal forces two conditions are set on the overall system. The first is the compatibility
condition which states that the responses on either interface are equal:

uA
b − uB

b = 0 → Bu = 0 (5)

where BM×N is a signed Boolean matrix which denotes for the N total global DoF, theM equality conditions that need to be
satisfied to impose compatibility on the interface. Note thatM is now also the number of compatibility constraints placed on
the system.

Next, the equilibrium condition ensures that a force equilibrium exists on the boundary. In other words, it states that the forces
on one side of the interface, are equal but opposite to the forces on the other side of the interface. In LM-FBS, these forces are
represented by a set of unknown Lagrange multipliers λM×1. Note that it can be cast in matrix form using the same signed
Boolean matrix B.

gA
b = −gB

b = λ → BTλ = −g (6)

Equation (6) is substituted into equation (4) which is then pre-multiplied by B to enforce compatibility:

Bu = BY
(
f −BTλ

)
= 0 (7)

This is then solved for the Lagrange multipliers (read: boundary forces), i.e. the forces needed to enforce the compatibility:

λ =
(
BYBT

)−1
BYf (8)



which in turn, are resubstituted into the equation of motion to derive the coupled responses using relation (6):

u = YABf =
[
Y −YBT

(
BYBT

)−1
BY

]
f (9)

The coupled admittance matrix YAB is then:

YAB = Y −YBT
(
BYBT

)−1
BY (10)

Equation (10) is a single-line equation of LM-FBS to couple models. Note that, although only two models were coupled in the
presented example, the equation holds for multiple components.

Weakening in the interface: Adding joint dynamics

Note that in the previous part the LM-FBS method is derived with strict compatibility and equilibrium between the components,
and thus a rigid connection. In order to add a linear flexible joint one of two things can be done: Either the joint is added as
a separate substructure into equation (10), which as explained before, is done easily. Or a joint is added as a relaxation of the
compatibility condition between components A and B; this method is extensively described in [6] but will be shortly repeated
here.
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Figure 2: Component A is connected to component B via a mass-less joint represented by YJ. Due to the weakened connection the compati-
bility condition states that uA

b − uB
b = ∆u.

In Figure 2 a flexible joint YJ is added between the interfaces of component A and B. Because of the joint, a gap can occur
between the boundary DoF of the two components altering the compatibility condition from equation (5):

uA
b − uB

b = ∆u → Bu = ∆u (11)

This gap is a response to the boundary forces λ which act on the joint:

∆u = YJλ (12)

Substituting these relations into equation (4) results in:

Bu = BY
(
f −BTλ

)
= ∆u = YJλ (13)

which again, is solved for λ:

λ =
(
BYBT + YJ)−1

BYf (14)

Similar to above, the weakly-coupled admittance matrix YAJB is found to be:

YAJB = Y −YBT
(
BYBT + YJ)−1

BY (15)

With equation (15) a coupled model can be created by weakening the compatibility condition. When including the joint in this
manner, as compared to when including the joint as its own substructure, some extra assumptions are made:



- The joint is mass-less. This assumption is based on the fact that the equilibrium condition introduced in equation (6)
remains unaltered. Therefore, the forces acting on the boundary DoF of component A and B are still equal but opposite
at all times. Since this is no longer the case if a mass exists between the DoF (as this introduces counter-acting inertial
forces), the joint is required to be mass-less. Alternatively, mass could be included beforehand by coupling (parts of) the
joint-mass to either side of components A and B using standard LM-FBS.

- The joint model YJ
M×M is constructed such that, when the boundary forces act on it, the response ∆u is the difference

in response between theM boundary DoF on component A and B. There is therefore no information pertaining to the
relation between DoF on any one side, i.e. it is assumed that there exists no coupling between the DoF on one interface
which might not always be the case.

These assumptions are recognized as similar to those found in the joint identification first introduced as inverse-substructuring,
explained in detail in [7, 8]. These assumptions may, on first glance, limit the scope of joints that one might be interested
in. However, both assumptions are valid for lightweight and small joint (such as friction contacts, glued contacts, welds, or
even bolts when applied to a large structure). In fact, the linearity assumption accompanied by frequency based methods (small
displacements and rotations) may already exclude the effects of these cross-coupling terms since they are bound to be non-linear.

Decoupling the components to obtain the joint

LM-FBS can be used to decouple components from full-systems as easily as it can be used to couple components to systems.
It can be shown that decoupling is as easy as adding a negative model [5]. In this case specifically, the interest is in obtaining
the joint dynamics from the system YAJB, therefore decoupling is done by simply reversing equation (15). Figure 3 shows the
process, which is indeed the reverse of what is shown in Figure 2. It can be shown that standard decoupling is analogous to this
equation inversion.

YAYB YJYAJB

Figure 3: The components YA and YB are decoupled from the full model YAJB. What is left is the dynamics of the joint represented by YJ.

This is done by first pre- and post-multiplying Equation (15) by B and BT respectively and then solving it for YJ to obtain (16).

YJ = −BYBT −BYBT
(
B∆YBT

)−1
BYBT (16)

where ∆Y is the difference in FRF between the uncoupled and coupled model:

∆Y = YAJB −Y (17)

2.2 System Equivalent Model Mixing

It is shown in the previous sections that, with LM-FBS, components can be coupled with and without joints, and that a joint can
be extracted from the system model. However, this still requires that the boundary DoF (c.f. the red markers in Figure 3) are
known. Measuring these DoF, especially in several directions and including rotational DoF, is often practically infeasible in the
assembled state. So what if, alternatively, one can expand a measurable DoF-set to include boundary DoF? In this section an
expansion method known as SEMM will be used to expand the measured internal DoF (c.f. the black markers in Figure 3) to
the required boundary DoF.
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Figure 4: The parent model and overlay model are coupled. The parent model Ypar contains all the DoF required but contains an erronous
joint. The overlay model Yov is a set of measurements of the system with the correct joint, but lacks the DoF required to identify this joint.
From this, the removed model –in this case a copy of the parent model– is decoupled. The resulting SEMM model YSEMM has the correct
joint (from the overlay model) and also has the required DoF to decouple (from the parent model).

System Equivalent Model Mixing (SEMM) is a method that uses substructuring to expand model dynamics contained in an
overlay model Yov onto the DoF-space of a parent model Ypar. In Figure 4 the process is drawn schematically for component
AB. Let us start by stating the equation of motion for the SEMM-system which directly follows from the schematic in Figure
4.

u = Y (f − g) , with Y =

Ypar

−Yrem

Yov

 , f =

f par

f rem

f ov

 , g =

gpar

grem

gov

 (18)

Here, the models Ypar,Yrem,Yov are the so-called parent, removed, and overlay models respectively. These are the building
blocks for SEMM; they are derived below.

In order to apply the method in the joint-identification case we require:

1. FRF-based component models that contain the entire DoF-set including boundary DoF. These may be either numerical
or experimental in nature (note: it may be possible to measure the boundary DoF in the unassembled state).

2. A set of measurements of an assembled full-system that observe the joint dynamics but do not have explicit boundary
DoF.

Requirement one is the parent model: To compute the parent model the component models can either be left uncoupled (in
block-diagonal form) or coupled with an initial guess joint model:

Ypar =
[
YAB

gg

]
=


YAB

iAiA
YAB

iAiB
YAB

iAbA
YAB

iAbB

YAB
iBiA

YAB
iBiB

YAB
iBbA

YAB
iBbB

YAB
bAiA

YAB
bAiB

YAB
bAbA

YAB
bAbB

YAB
bBiA

YAB
bBiB

YAB
bBbA

YAB
bBbB

 (19)

where the (global) DoF-set g contains the boundary DoF-set b (c.f. the red markers in Figure 4) and the internal DoF-set i (c.f.
the black markers in Figure 4) such that g = col

[
iA iB bA bB

]
are all the DoF of component AB.

Note that if the joint is in fact rigid, then due to the compatibility equation (5) the third and fourth row, and third and fourth
column are redundant since DoF bA = bB . It is important that the parent model, as postulated above, contains a flexible initial
guess joint such that DoF bA 6= bB for reasons which will be explained later. Note that an uncoupled model (infinitely flexible
joint) is then also permitted. In this specific case the cross-terms between the components are all zero.

Next, the full-systemmeasurements (which observe the joint dynamics) are required. These become the so-called overlay model:

Yov =

[
YAJB

iAiA
YAJB

iAiB

YAJB
iBiA

YAJB
iBiB

]
(20)



As stated before, the measurements can only be done for the internal DoF iA, iB .

Finally, SEMM requires the removed model which is none other than (a reduced form of) the parent model (c.f. Figure 4). One
can choose to formulate the removed model as the parent model itself, or as a reduced form of of the parent model which contain
only the internal DoF iA, iB 2. An explanation on the differences is omitted in this paper, but is given in [4]. In this application,
it is chosen for the removed and parent model to be the same size and thus the same:

Yrem = Ypar (21)

To solve (18) the compatibility and equilibrium constraints are applied as in LM-FBS. Compatibility requires:

upar
g − urem

g = 0 (22a)
urem
i − uov

i = 0 (22b)

The equilibrium condition reads:

gpar
b + grem

b = 0 (23a)
gpar
i + grem

i + gov
i = 0 (23b)

Like before, the compatibility and equilibrium condition can be written in matrix-notation with the signed Boolean Matrix B:

Compatibility : Bu = 0, Equilibrium : g = BTλ, with B =

upar
i upar

b urem
i urem

b uov
i I 0 −I 0 0

0 I 0 −I 0

0 0 I 0 −I


The formulation exactly follows the LM-FBS notation described above, thus it is solved with equation (10). It can be shown that
from this solution the single-line equation of SEMM can be obtained. The derivation is omitted in this paper, but can also be
found in [4]:

YSEMM = Ypar
gg −Ypar

gg

(
Ypar

ig

)+ (
Ypar

ii −Yov
ii

) (
Ypar

gi

)+
Ypar

gg (24)

Here we made use of the relation (21) to substitute the terms of the removed model.

The SEMM model now contains the dynamics from the overlay model while including the boundary DoF’s required to extract
the joint model with equation (16).

When expanding a DoF-set, new information is extrapolated based on the information contained in the measurements of the
overlay model. Unfortunately, such an extrapolation is generally erroneous. Consequently, any joint model extracted from the
expanded SEMM model is also erroneous (although presumably less so than in the original parent model).

If one assumes that the overlay model contains the correct dynamics, then the only error made is this extrapolation error. It
comes solely from the parent model’s manifold (i.e. its modal content) differing from that of the correct overlay model. In other
words, even though the SEMM method will alter the dynamics of the parent model to fit that of the overlay model, it can only
do so based on the allowable modal directions of said parent model. This is because any deflection shape created by the parent
model must still be a linear combination of its modeshapes.

2Note that reduction in admittance space is done by simply removing the DoF from the matrix.
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Figure 5: (a): A clamped beam with two modeshapes. The first modeshape is equal for both the parent and overlay model. The second is
different for the parent (blue) and overlay model (red). (b): The normalized deflection shapes of each model for a given actuation. The SEMM
model (green) is equal to the overlay model on the control points (black circles) but differs at the other locations since its end result must be a
linear combination of the parent modeshapes given in (a). This off-set is the expansion error ε

Figure 5 illustrates this simple fact with a short example of a clamped-free beam which – for simplicity – has only the first two
modes. These are depicted in (a). The first mode-shape is relatively the same for both parent (red) and overlay (blue) model, yet
the second differs. The normalized deflection shapes of the parent (red), overlay (blue) and resulting SEMM (green) model for
a given actuation are illustrated in (b). When looking at the SEMM model, even though the shared DoF match as per design,
the internal DoF cannot since the required deflection shape is not a linear combination of the parent mode-shapes.

This is also the reason that no rigid connection should be used to couple the component models YA and YB to create the parent
model YAB. Since, if that were the case, the compatibility condition would ensure that bA = bB in the entire modal space; i.e.
there exist no modal direction in which a gap –and thus joint dynamics– exists. Since the parent model can only adapt to the
overlay model in the modal directions, forming a gap is a non-controllable direction. Consequently, the gap is never created and
thus no joint would be able to be identified!

In the single-line equation (24) one can observe that any changes made to the parent model (including expansion error) is made
in the second term of this equation. This second term is proportional to the difference between the parent and overlay model.
The error ε of the SEMM expansion is therefore –in some form– proportional to the difference in overlay and parent model:

ε ∝
∥∥Ypar

ii −Yov
ii

∥∥ (25)

Also note that in the trivial solution when the overlay model and parent model are equal, there is no observable error in the
SEMM model since YSEMM

ii = Yov
ii = Ypar

ii . The term observable error is used here to accentuate that an error might still exist
on the DoF which do not explicitly exist for the overlay model, and thus cannot be observed. Note that the reason enough internal
DoF must be taken into account is to ensure the observability of this error and by extension the joint dynamics. If this is the
case, one can derive from equation (25) that the parent and overlay model must converge to minimise the expansion error.

2.3 The Optimisation Scheme

Unfortunately the joint identified from the SEMM model is not perfect due to the expansion error discussed in the previous
section. Now let us assume that the only difference between the parent and overlay model is due to the joint dynamics. If the
joint model extracted from the SEMMmodel is closer (i.e. converged) to the joint implicit in the measurements, then surely this
joint can be used to create a parent model which further resembles the overlay model. Due to this convergence, the expansion
error of equation (25) is decreased which would result in a better identification of the joint. Repeating this, the process would
converge to the identification of the true joint.
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Figure 6: The joint optimisation process. The initial joint (2) is used to create a parent model (3). The parent model is coupled to the overlay
model in the SEMM process (4). From the new SEMMmodel a new joint is identified (5). This new joint is used to create a new parent model
(3). The process is then repeated until parent and overlay model converge.

Following this conjecture, an iterative process can be described, its schematic is illustrated in Figure 6:

1. Measurements are performed on the assembled system, these measurements have implicit information of the joint, but
lack boundary DoF measurements: this becomes the overlay model Yov.

2. An initial guess for the joint is constructed: YJ
n=0.

3. This joint is used to couple the component models A and B: this becomes the nth parent model (Ypar)n.

4. SEMM is performed with the parent and overlay model in order to obtain the SEMM model YSEMM
n .

5. Decoupling using Equation (16) is performed to extract a new joint model from the SEMM model: YJ
n+1.

6. Steps 3 - 5 are repeated until the difference between parent and overlay model –and thus the expansion error of equation
(25)– is minimised.

There are some things that must be considered when implementing this scheme. In reality there are more error sources than
just the SEMM expansion error (one can think of measurement errors, incorrect component models, incorrect DoF locations,
etc.) and these errors will pollute the optimisation such that a true optimum may never be found in practice. Nevertheless, some
techniques may be implemented to clean up the results such that a good estimation can still be achieved:

- If some notion of the joint geometry is known (such as there being no cross-couplings) a fitting can be done to acquire
some (physical) properties of the joint. Knowing that the joint properties are –to some extent– frequency independent,
one could implement this method at frequencies where the joint dynamics are more prevalent compared to the system
dynamics. At these frequencies the observability of the joint is higher, resulting in a higher signal to noise ratio when
decoupling. Such principles have been used successfully in the past. [3].

- It may be that the method jumps between solutions, resulting in local optima. One can choose to average out past results
such that the new joint (YJ)n+1 is a mix between past results: (YJ)n+1, (YJ)n, (YJ)n−1. This is in effect a relaxation
scheme and can also be interpreted as analogous to implementing numerical damping in e.g. Newmark methods.



- Since only the joint is of importance, the quality of the component models is secondary. Yet, since this method does
not discriminate between error in the joint model and error in the sub-components, any discrepancy between the sub-
component models in the parent versus the overlay model is going to pollute the result. It might be important to ensure
that, at the very least, the component models YA and YB are equal in both the parent and (implicit) overlay model. If the
parent model is measured in the same manner (but disassembled) as the overlay model, then any measurement bias is also
shared by both the parent and overlay model which will reduce this type of error.

3 A NUMERICAL STUDY

XY

Z

B

A

Bar Properties

E 7.80× 1011 Pa

ρ 5.00× 103 Kg/m3

A 2.83× 10−5 m2

L 0.10 m

Figure 7: The truss structure used in this test-case. On the left the two parts of the assembly are colour-coded. The bottom part (Structure A)
is fixed at the bottom. Structure B is attached to structure A via a joint in 6-DoF. On the left the assembly AB is shown as a whole. The blue
node is the location of the joint. The red nodes are the measurement locations, i.e. the internal DoF used in the SEMM-optimisation scheme.
It is important to note that the structures are only connected via this 6-DoF connection point. The structure B is placed on A in such a way
that symmetry is avoided.

A small numerical case is presented as a proof of concept. For this case the connection of two bar-truss structures shown in
Figure 7 is investigated. The truss structures are connected via a 6-DoF joint: 3 translational and 3 rotational DoF on a node in
the centre (c.f. the blue node on the right side of Figure 7) which acts as the interface. The centre-node is created by means of
a RBE-3 spider element from the nodes at each structure’s end. Note that the measurement locations (c.f. the red nodes in the
right image of Figure 7) are spread so that the joint dynamics are observable. Also note that none are on the interface area or
inaccessible locations.

Table 1: The parameters (stiffness k and damping c coefficients) of the joints tested. The parameters of the initial-guess joint used in the first
iteration of the parent model is also provided. These parameters are used in both test-cases.

Strong Joint Weak Joint Initial Guess
DoF k c k c k c

x 1× 108 100 1× 104 100 1× 102 0
y 1× 108 100 1× 104 100 1× 102 0
z 1× 1010 1 1× 106 1 1× 102 0
θx 1× 1010 10 1× 106 10 1× 102 0
θy 1× 1010 10 1× 106 10 1× 102 0
θz 1× 108 100 1× 103 100 1× 102 0

Two joints are investigated: a weak joint and a strong joint. The strong joint’s influence on the structure is noticeable but



minimal. The weak joint is chosen such that it almost fully determines the assembly’s dynamics. Only DoF-to-DoF damping
and stiffness is investigated: no cross-coupling between DoF exist in the tested joints. Furthermore, the damping values are kept
equal for both. The parameters of the joints are given in Table 1.

The optimisation scheme is run for several iterations; 20, 100 and 200 iterations are runwhich require approximately 2.5, 12.5, 25

seconds computation time respectively. In Figure 8 the driving-point frequency response functions of the system YAB for the
boundary DoF θz are given; the graphs represent the results after the pre-determined number of iterations for both the case of
the weak (left) and strong (right) joint. The reference FRF and the FRF of the rigidly connected YAB are also provided as a
comparison.

The FRF follow the reference throughout a large part of the frequency band. An interesting error occurs at or near the resonance
frequencies of the would-be rigidly fixed system YAB. The results show that the optimising scheme cannot identify the joint
near these frequencies.
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Figure 8: The driving-point FRF on DoF θz . The FRF of the weak joint are given on the left and the FRF of the strong joint are given on
the right. In both cases – and even after only a few iterations – the FRF seem to follow the reference; the exception being near the resonance
frequencies of the rigid coupling. This results in spurious peaks near those frequencies.

Next, the linear joint parameters can be identified from the FRF of the joint YJ. In order to do this, a frequency band is chosen
such that it contains no resonance frequencies of the rigidly coupled YAB in order to ensure that the previously observed error
does not pollute these results. For this example the frequency band from 450 Hz to 850 Hz is chosen. The joint parameters are
extracted by means of a curve-fit of the driving-point FRF of ZJ

n = (YJ
n)−1

It is important to remember that this fitting does not influence the optimisation since the optimisation uses the raw model YJ
n

for each subsequent step. In Table 2 the results of the fitting for n = 20, 100 and 200 are given. It is immediately apparent that
these joint properties are non-physical! Most of the stiffness values are –with the exception of ky– negative which indicates an
active joint. However, it is important to note two things: first, even though the values are off, the FRF in Figure 8 follow the
reference FRF in amplitude and phase. Second, as the number of iterations increase, the joint parameters remain relatively the
same. This indicates that the resulting joint parameters are approaching a (non-physical) local optimum, i.e. it indicates that
multiple solutions exist that are indistinguishable from the chosen set of observation DoF.



Table 2: The fitted parameters of the strong joint. ∆ is the difference between the value and its reference given in orders of magnitude. The
results for both the stiffness k and damping values c are off by up to a few orders.

Strong Joint
20 Iterations 100 Iterations 200 Iterations
k ∆ k ∆ k ∆

-4.57× 107 -0.340 -3.19× 107 -0.496 -3.28× 107 -0.485
7.25× 106 1.140 3.13× 107 0.505 4.56× 107 0.341
-5.28× 108 -1.277 -4.73× 108 -1.325 -4.31× 108 -1.366
-1.22× 106 -3.915 -1.75× 106 -3.756 -3.12× 106 -3.505
-2.76× 107 -2.558 -3.08× 107 -2.511 -3.11× 107 -2.508
-1.05× 108 -0.020 -9.88× 107 -0.005 -9.58× 107 -0.019

c ∆ c ∆ c ∆

1079.7 1.033 1571.60 1.196 2265.5 1.355
60.9 0.215 446.98 0.650 710.1 0.851

4053.8 3.608 4053.99 3.608 4100.8 3.613
11.7 0.067 30.68 0.487 -15.8 -0.198
163.4 1.213 106.00 1.025 11.6 0.064
685.8 0.836 491.74 0.692 377.1 0.576

Similarly the joint parameters of the weak joint can be identified. The same frequency band is used. Note that already after a
few iterations the real joint parameters are found accurately for all DoF with the exception of the DoF θx. This may indicate that
the observability of this DoF is poor. Nevertheless, as the iterations increase the optimisation converges to the true values.

Table 3: The fitted parameters of the weak joint. ∆ is the difference between the value and its reference given in orders of magnitude. The
results for both the stiffness k and damping values c are all very close to the true values. The exception is the DoF θx.

Weak Joint
20 Iterations 100 Iterations 200 Iterations
k ∆ k ∆ k ∆

9.91× 103 0.004 9.88× 103 0.005 9.84× 103 0.007
1.00× 104 0.002 9.93× 103 0.003 9.91× 103 0.004
9.97× 105 0.001 9.99× 105 0.000 9.99× 105 0.000
1.71× 104 1.768 6.19× 104 1.208 1.03× 105 0.985
1.00× 106 0.001 9.95× 105 0.002 9.93× 105 0.003
-7.98× 102 -0.098 7.15× 102 0.146 4.37× 102 0.360

c ∆ c ∆ c ∆

100.0 0.000 100.0 0.000 100.0 0.000
100.1 0.000 100.0 0.000 100.0 0.000
0.7 0.150 1.0 0.002 1.0 0.001
0.2 1.619 0.6 1.234 0.9 1.049
10.1 0.005 9.9 0.006 9.8 0.008
99.7 0.001 100.0 0.000 100.0 0.000



4 DISCUSSION

The FRF of Figure 8 show that the joint identification results follow the reference FRF for frequencies other than at or near the
resonance frequencies of the rigidly connected system YAB. Furthermore, the extraction of joint parameters show that better
results are obtained for the weak joint. This suggests that the joint identification can only be done when the joint dynamics are
sufficiently observable.

Some additional thoughts are provided to contextualize the results:

- The optimisation scheme performs poorly at and near the resonance frequencies of the rigidly connected system YAB.
This results in spurious peaks; at these frequencies the optimisation is forced towards the rigid connection. As explained
in section 2.2: once the rigid connection is formed, the gap between the respective boundary DoF of structuresA andB is
closed. Remember that once closed, the gap cannot be opened since then the optimisation directions (the modal directions
of the parent model) also contain no gap. A rigid connection can therefore be regarded as an –unwanted– local optimum.

- The structure used in this test-case is chosen for its simplicity. However, it might be that this case is too simple. The truss
elements are created with bar elements 3 which hinders observability since it is hard to pinpoint the connectivity between
the boundary and chosen internal DoF. For example, the results in Table 3 show that all the joint parameters are found
accurately after only a few iterations, yet the stiffness and damping values of DoF θx were not. This indicates a lack of
observability on this DoF which is curious considering the chosen locations of the internal DoF.

5 CONCLUSION

A SEMM-based method can be used to identify a joint without directly measuring the interface of an assembled system. The
joint must be observed with the measurements performed and included in the overlay model. However, if this is the case any
number of boundary DoF can be investigated within a single measurement campaign. That is to say: as long as the observability
condition is met one could identify a joint with the same overlay model coupled to a parent model with any desired translational
or rotational boundary DoF.

A numerical proof of concept is provided and for specific cases the joint is accurately identified but many envisioned error
sources have been omitted. The additional error sources mentioned in section 2.3 should first be investigated before any practical
applications can realistically be performed. Nevertheless, the methodology is promising since it suddenly allows users to do a
preliminary (read: linear) investigation of complex joints, unlimited by the inaccessibility of common interfaces.
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3Many connections are therefore implicit, e.g. bending stiffness is created by the geometry of the truss, rather than in the element itself
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