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Abstract

The problem of a general, symmetric contact, between elastically similar bodies, and capa-
ble of idealisation using half-plane theory, is studied in the presence of interfacial friction. It is
subject to a constant set of loads - normal force, shear force and bulk tension parallel with the
interface - together with an oscillatory set of the same quantities, and is in the steady state.
Partial slip conditions are expected to ensue for a range of these quantities, and the permanent
stick zone is explicitly established, thereby effectively specifying the maximum extent of the
slip zones. Exact and approximate, easy to apply recipes are obtained.

Keywords: Contact mechanics; Half-plane theory; Partial slip; Varying normal and shear loads; Bulk tension;
Asymptotic methods

1 Introduction

Fretting damage is a serious cause of crack nucleation and our understanding of contacts
suffering loading which gives rise to partial slip remains incomplete. Our laboratory is
currently investigating a number of practical fretting problems in the aerospace, automotive
and subsea industries. There is a striking similarity between some aspects of the first and
last applications; a dovetail root of a gas turbine fan-blade has, as each flank, a contact
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resembling closely a flat punch with rounded edges, and the locking segments employed in
wellhead connectors are geometrically very similar. There is a further aspect of these two
problems which is strikingly similar; this is that there is a primary load which is induced and
remains constant or nearly constant: in the case of the gas turbine it is the centrifugal forces
developed as the engine is started up, and which changes, usually, only moderately during
flight, and in the case of the wellhead connector it is the large clamping force exerted by
the imposition of hydraulic pressure. Superimposed on each of these is a second load which
imposes many thousands of cycles of load per major cycle: in the case of the gas turbine
the origin is vibration, and in the case of the wellhead fitting it is the surface motion of the
vessel moving the riser. The point which is made is that, in each case, the major load moves
the contact to a particular point in P -Q-σ space, where these symbols mean, respectively,
the normal load, shear force and differential bulk tension arising parallel with the contact
flank, and hold it there. Then, the secondary load, which fluctuates in what we assume to
be a cyclic manner, induces changes in all three of these quantities. As the origin of the
cyclic components is a solitary load, P , Q, and σ must change in phase.

Because the assembly suffers many thousands of cycles of minor load per major cycle the
problem we set ourselves is to establish the steady-state solution to the problem as succinctly
as possible. Finding the coordinates of the contact and the coordinates of the permanent
stick zone is enough to determine the maximum extent of the slip zones, and in this paper
we show how to do this.

The majority of partial slip solutions employ a method in which the shear traction dis-
tribution is viewed as the sum of that due to sliding, together with a corrective term. The
earliest and best known normal contact solution was that found by Hertz, i.e. where the
contacting bodies have second order (strictly parabolic but usually interpreted as circular
arc) profiles [1], so it is natural that the first partial slip contact solutions were all associated
with the same geometry. The first solution, for a subsequently monotonically increasing
shear force, was found by Cattaneo [2], and, apparently unaware of this solution, Mindlin [3]
developed the same solution and went on to look at unloading and reloading problems [4],
[5]. These were the only significant solutions for some time, and then Nowell and Hills [6]
looked at what happened when a bulk tension was simultaneously exerted in one body as the
shear force was gradually increased. The next breakthrough came with the near simultane-
ous discovery by Jäger [7] and Ciavarella [8] that, just as the ‘corrective’ shear traction was
a scaled form of the sliding shear traction for the Hertz case, the same geometric similarity
applies whatever the form of the contact. Major progress in solving problems involving a
varying normal and shear load, and where the intention was to track out the full behaviour
as a function of time, was made in [9]. But this calculation was restricted to P -Q problems
where the stick zone was symmetrically positioned and only its extent as a function of time
was to be found.

In this paper we shall restrict our attention to contacts which are geometrically symmet-
ric, but where the stick zone can be positioned anywhere within the contact edges and where
the contacting bodies are elastically similar.

In addition we shall establish an approximate solution to the same problem using asymp-
totic forms. The latter is done with the objective of demonstrating the equivalent effect of
shear and bulk-tension at a contact edge. These asymptotes establish the contact edge be-
haviour, but, of course, an additional feature of the problem described is that the changing
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body A

body B

Figure 1: Generic half-plane contact subject to normal, shear and bulk tension loading

normal load causes the position of the contact edge to change, smearing out the fretting
damage, and the effects of this are yet to be established experimentally.

Lastly, we will apply the results found to a partial slip contact whose geometry is Hertzian,
simply because the algebra for this case is most straightforward, and its extension to the
more frequent practically occurring ‘flat and rounded’ contact case is straightforward, if
algebraically taxing. Figure 1 shows a generic half-plane contact, subject to normal, shear,
and bulk tension loading, for reference. The contact law specifies the half-width of the
contact, a(P ).

It is valuable to visualise the history of loading in the two-dimensional load space depicted
in Figure 2 a). The initial loading might take us to a point 0 (i.e. P0, Q0, σ0), or anywhere
between the fluctuations of range (∆P , ∆Q, ∆σ) so that the steady state loading trajectory
moves between points (P1, Q1, σ1), where each of these quantities is defined as the mean
value less half the range given by the delta terms, and (P2, Q2, σ2), where each of these
quantities is the mean value plus half the change. Note that the steady state trajectory is a
straight line as P , Q, and σ change in phase. Out of phase changes result in an elliptically
shaped loading trajectory. Modest variations from in phase loading do not invalidate the
presented solution provided that the slip zones are monotonically increasing at each end
of the contact during each half-cycle. Figure 2 b) looks at a P -Q-σ space from a rotated
perspective, which includes planes with gradient ±f with respect to the normal load axis,
where f is the coefficient of friction. The loading trajectory must lie within these planes -
if it touches them, the contact will slide, i.e. there will be rigid body motion. Notice that
the presence of a bulk tension affects the propensity of a contact to slip, but not to slide (no
rigid body motion).
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Figure 2: Two (a) and three-dimensional (b) illustration of a load space for a P -Q-σ prob-
lem

We can also establish the condition for complete adhesion - no slip at any point. This is
given by the inequality [10]

|∆Q|
∆P

+
πa∆σ

4∆P
< f , (1)

where we would normally think of the delta terms as differentials but, if they are applied
to the problem of proportional loading between the end points they may be interpreted as
stated earlier, and the value of a is taken as its largest value, here depicted a2. When this
inequality is not satisfied there will be a steady state (or permanent) stick zone, and regions
of oscillatory slip.

2 Steady-state slip behaviour

For the reduced problem when there is no variation in bulk tension, a comprehensive
analysis, including the effects of phase shift and transient behaviour, was given in [9]. There,
it was shown that the size of the permanent stick zone is given by a(PK) where

PK = P0 −
∆Q

2f
. (2)

In this sequel we shall assume that the amount of bulk tension added-in is small so that
it is insufficient to reverse the direction of slip at either end of the contact. Therefore, the
slip direction is reversed when going from point 1 to point 2 of the loading cycle compared
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with going from 2 to 1. The slip zones find their maximum extent just before the end points
of the loading trajectory are reached, but slip at each end of the contact is always of the
same sign.

To enable the solution to be developed in its simplest form, we write down, first, in
the spirit of the Ciavarella-Jäger approach [8], the solution to the normal contact problem.
Consider, first, the normal load problem, Figure 1. At point i (i = 1, 2) the contact pressure
is pi(x) and contact half-width ai. These quantities are related to the contact profile, the
gap function g(x), by [11]

dg

dx
=
A

π

∫ ai

−ai

pi(ξ) dξ

x− ξ
,− ai < x < ai , (3)

where A = 4(1−ν2)
E

is the material compliance of the two half-planes, E being the Young’s
modulus and ν Poisson’s ratio, and plane-strain obtains. Normal equilibrium is imposed by
setting

Pi =

∫ ai

−ai
pi(x)dx , (4)

where Pi is the normal load.
We turn, now, to tangential loading. Figure 3 shows, schematically, the contact as the

ends of the loading cycle are approached, including a permanent stick zone in the steady-
state stick zone, spanning [−m,n], where e indicates the eccentricity from the centre line of
the contact. A restriction of the solution presented is that the direction of slip is the same
at either end of the contact when going from 1 to 2 and is reversed, but remains the same
at both ends when going from 2 to 1. This manifests in the constraint that −a1 < −m and
n < a1, where a1 is the contact half-width at the minimum point of the load cycle.

-a2
a

2

-m a
1-a

1 n

e

Figure 3: Contact as the ends of loading cycle are approached, including a permanent stick
zone

Because of the presence of bulk stress this stick zone is not located centrally. Hence
the slip zones at the ends of the contact are not of the same size and the problem becomes
unsymmetrical. Note that the extent of the slip zones (their inner limits) must be the same
at the end of the cycle to preserve continuity of material: the slip displacement occurring
in one half cycle must be precisely equal and opposite to the displacement in the other half
cycle for slip not to accumulate.

We know that in the stick zone, −m < x < n, the change in strain difference between the
two bodies, at the surface, must be zero between the two loading states and we can write
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∆εxx,1 = ∆εxx,2 , −m < x < n. (5)

The difference in surface strains arising in the two bodies, ∆εxx,i, we will find from the
customary integral equation, by writing the shear traction as the sum of the full sliding term,
fpi(x), over the full contact length, together with a corrective term q∗i (x) in the stick zone
and the effect of the difference in bulk stress. For load point ”1” we write [11]

∆εxx,1 = −A
π

∫ a1

−a1

fp1(ξ) dξ

ξ − x
+
A

π

∫ n

−m

q∗1(ξ) dξ

ξ − x
+
A

4
σ1 , (6)

and for load point ”2” we write

∆εxx,2 =
A

π

∫ a2

−a2

fp2(ξ) dξ

ξ − x
+
A

π

∫ n

−m

q∗2(ξ) dξ

ξ − x
+
A

4
σ2 . (7)

We infer from equation (5) that

− A

π

∫ a1

−a1

fp1(ξ) dξ

ξ − x
+
A

π

∫ n

−m

q∗1(ξ) dξ

ξ − x
+
A

4
σ1

=
A

π

∫ a2

−a2

fp2(ξ) dξ

ξ − x
+
A

π

∫ n

−m

q∗2(ξ) dξ

ξ − x
+
A

4
σ2 , −m < x < n , (8)

and as −a2 < −a1 < −m < x < n < a1 < a2, we may rewrite the above equation, making
use of equation (3), in the usual form for singular integral equations as

2f

A

dg

dx
+

∆σ

4
= − 1

π

∫ n

−m

[q∗2 − q∗1] (ξ) dξ

ξ − x
,−m < x < n , (9)

where ∆σ = σ1 − σ2. It is worth commenting that the LHS of this equation has just two
terms; one is the profile of the contacting bodies (as appears in the normal load problem),
and the other is a constant. Let the resultant ‘corrective’ shear forces be

Q∗
i =

∫
q∗i (x) dx , (10)

so that we may now impose tangential equilibrium by setting

Q1 = −fP1 +Q∗
1 , (11)

Q2 = fP2 +Q∗
2 . (12)

The range of shear force, ∆Q, is given by

∆Q = Q2 −Q1 = f(P2 + P1) +

∫ n

−m
[q∗2 − q∗1](x) dx . (13)
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2.1 Partial solution

It is possible to make some progress towards a general solution without specifying the
contact geometry. The inversion of integral equation (9), bounded both ends, is given by

[q∗2 − q∗1](x) = − 1

π

√
(x+m)(n− x)

∫ n

−m

[
∆σ
4

+ 2f
A

dg
dξ

]
dξ√

(ξ +m)(n− ξ)(ξ − x)
, (14)

and the consistency condition is given by

∫ n

−m

[
∆σ
4

+ 2f
A

dg
dξ

]
dξ√

(ξ +m)(n− ξ)
= 0 . (15)

Because of the identity
∫ n
−m

1√
(m+ξ)(n−ξ)

dξ = π, this gives the result

∫ n

−m

dg
dξ√

(m+ ξ) (n− ξ)
dξ = −πA∆σ

8f
, (16)

which provides part of one result helping to fix the position and extent of the permanent
stick region. Further, a second mathematical identity∫ n

−m

dξ√
(ξ +m)(n− ξ)(ξ − x)

= 0 , −m ≤ x ≤ n , (17)

simplifies the solution of the singular integral equation (14) to give

[q∗2 − q∗1](x) = − 2f

πA

√
(x+m)(n− x)

∫ n

−m

dg
dξ

dξ√
(ξ +m)(n− ξ)(ξ − x)

, −m ≤ x ≤ n.

(18)

To evaluate the tangential equilibrium condition, the following integral is needed. If we
change the order of integration we find∫ n

−m
[q∗2 − q∗1](s)ds = −2f

A

∫ n

−m

√
(m+ s) (n− s)

π

(∫ n

−m

dg
dξ√

(m+ ξ) (n− ξ) (ξ − s)
dξ

)
ds

(19)

= − 2f

Aπ

∫ n

−m

dg
dξ√

(m+ ξ) (n− ξ)

(∫ n

−m

√
(m+ s) (n− s)

(ξ − s)
ds

)
dξ . (20)

Knowing that∫ n

−m

√
(m+ s) (n− s)

(ξ − s)
ds = −π

2
(m− n) + πξ , −m ≤ ξ ≤ n , (21)
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we see that ∫ n

−m
[q∗2 − q∗1](s)ds = − 2f

Aπ

∫ n

−m

dg
dξ

(
−π

2
(n−m) + πξ

)√
(m+ ξ) (n− ξ)

dξ , (22)

and making use of equation (16), tangential equilibrium is evaluated as

f (P2 + P1)−∆Q− π (n−m) ∆σ

8
=

2f

A

∫ n

−m

ξ dg
dξ√

(m+ ξ) (n− ξ)
dξ . (23)

3 Application - Hertzian contact

In a Hertzian contact, of relative radius of curvature R, the contact law is given by [1]

a2 =
2PAR

π
, (24)

so that if the normal load varies over the range [P1 P2] the half-width of the contact patch
varies over the range

a2
i =

2PiAR

π
i = 1, 2 . (25)

In addition, we know that for the present case we have dg
dx

= x/R, and so equation (23)
becomes

f (P2 + P1)−∆Q− π (n−m) ∆σ

8
=

2f

A

π

8R

(
3m2 + 3n2 − 2mn

)
. (26)

Turning to the consistency equation (16), the following integral appears∫ n

−m

dg
dξ√

(m+ s) (n− s)
ds =

π

2R
(n−m) . (27)

So the relation between the eccentricity, e, and the range of the bulk stress is given by

e =
(n−m)

2
= −AR∆σ

8f
, (28)

and using this result in the equilibrium equation leads to

f (P2 + P1)−∆Q =
1

4

π

AR
f (m+ n)2 . (29)

The size of the permanent stick region, d = (m+n)
2

, is given by

d2 =
AR

π

[
P1 + P2 −

∆Q

f

]
, (30)

8



and n = d + e,−m = −d + e. The size of the RH slip zone therefore varies between
[a2 − (d+ e)] and [a1 − (d+ e)] and the range of the LH slip zone is given by similar expres-
sions but with e replaced by −e.

It is noteworthy that, in the case of a Hertzian contact, evaluation of the consistency
condition and tangential equilibrium leads to a pair of uncoupled explicit equations. If the
geometry profile gradient, dg

dx
, is different from a Hertzian contact, i.e. is not a linear function,

the two equations might be coupled and the size, d, and the eccentricity, e, of the permanent
stick region are to be obtained implicitly.

Figure 4: Evolution of slip zone sizes for different loading cases

Figure 4 shows the length of the slip zone at the right edge of the contact in a di-
mensionless form. The length of the slip zone is represented for different load regimes:
∆Q/ (fP0), P2/P1 and ∆σ/P1. We also consider different values for the coefficient of fric-
tion (f = 0.3, 0.6). For comparison, the expected slip zone for the sequential loading case
without a change in bulk stress (P2/P1 = 1, ∆σ = 0) is included. As expected, the greater
the ratio between ∆Q/ (fP0), the longer is the slip zone. A similar behaviour is found when
keeping the other loading parameters constant, but increasing the range of the bulk stress.
On the other hand, increasing the ratio P2/P1, while maintaining a constant ∆Q/ (fP0) and
∆σ/P1, decreases the slip zone. Finally, similar conclusions can be drawn for the case with
f = 0.6, but noting that the variation of the slip zone length with ∆σ/P is less pronounced
than that obtained in the case with a coefficient of friction equal to 0.3.

4 Asymptotic representation

The object of this approach is to be able to provide a description of the contact edge
state of tractions and slip/stick in the smallest number of parameters, and to apply them
to a range of problems. This enables a prototype geometry to be replaced by another in
the laboratory test - for example a flat and rounded punch by a Hertzian contact - and
maintaining a very similar edge contact pressure. By changing the mix of shear to bulk
tension exciting shear tractions slip zones of similar length may be maintained. These ideas
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have been explored quite extensively for problems where the normal load remains constant
[12]. Note that, because we are using a single term asymptote as shown in Figure 5, the
solutions will be poor if the contact edge moves significantly in comparison with the contact
size.

a

y

s

w

K sN
1/2

K sT
-1/2

p s( )

q s f( )
-1

Figure 5: Normal square root bounded asymptote and tangential square root singular
asymptote

It is therefore likely to work well with flat and rounded contacts, so that a2 − a1 � a0

and where the change in normal load is such that ∆P � P0. Furthermore, the asymptotic
representation hinges upon the assumption that the size of the slip zones is small in compari-
son with the contact size. From [13] we see that, generally, if a normal load has already been
applied and held constant, the normal traction might be approximated as p(s) = KN

√
s,

where the stress intensity factor KN is connected to the contact law by

KN =
1

π

√
2

a

dP

da
. (31)

If for the generated contact of half width, a, the coefficient of friction is sufficiently high
to inhibit all slip, the application of a shear force, Q, and bulk tension, σ, will induce, at
the left hand edge (x = −a) a singular shear traction whose form is given by q(s) = KT/

√
s,

where x = −a+ s for s� a, and where

KT =
Q

π
√

2a
+
σ

4

√
a

2
, (32)

and positive values of Q and σ are as depicted in Figure 2. Let an equivalent shear force
alone, say S, produce the same value of stress intensity, KT . Then, clearly

S = Q± π a σ

4
, (33)

where we choose the +ve sign for the LH end where the effects of shear and bulk tension
add, and the −ve sign for the RH end where the bulk tension diminishes the effect of the
shear force.
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So, the size of the permanent stick zone estimated by this procedure is given by equation
(2) with Q replaced by S so that our best estimate of the stick-slip transition points, −m =
a(PK), n = a(PK) is given by

PK = P0 −
∆S

2f
, (34)

where, for the former we choose the +ve sign in equation (33) and for the latter the −ve
sign.

The equivalent shear force, S, collapses the three-dimensional P -Q-σ problem to two
dimensions as depicted in Figure 6. Obviously this facilitates visualisation. However, note
that P -S load space represents partial slip behaviour at one of the edges of the contact only.
So two loops (or straight lines depending on the phase shift between the load components)
are needed to describe fully the contact’s partial slip behaviour at both edges in the collapsed
two-dimensional load space.
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KP

( )P S2 2,

f

-f

0

1 ( )P S1 1,

major lo
ad

DS

DP

Figure 6: Two-dimensional P -S load space for a P -Q-σ problem

An asymptotic formulation for incomplete contacts subject to varying normal and shear
loads has been developed in [13]. It is possible to extend these methods to problems involving
differential bulk stresses. Here, we wish to demonstrate that the mathematically exact results
we obtain for the steady-state slip behaviour in this paper agree very well with the asymptotic
solution found for a Hertzian contact.

For brevity, the findings from [13] are not repeated in detail, but the steady-state be-
haviour may be described as follows. The size of the slip zone, w = a − d ± e, as we reach
point 2 when loading from 1 to 2 in steady-state, may be approximated by

w2 = −∆KT

fK2
N

+
∆a12

2
, (35)

where ∆KT = K1
T −K2

T is the change in shear stress intensity factor KT and ∆a12 = a1−a2

is the change in contact size between minimum and maximum steady-state loading points,
1 and 2. K2

N is the normal stress intensity factor at load point 2.
The approximate size of the slip zone at the minimum loading point 1 during steady-state

regime is given by

w1 =
∆KT

fK1
N

− ∆a12

2
, (36)
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where K1
N is the normal stress intensity factor at load point 1.

The approximate size of the slip zone at a general point X, while loading from point 1
to point 2 during steady-state regime, is given by

w1X =
∆K1X

T

fKX
N

− ∆a1X

2
, (37)

where ∆K1X
T = K1

T − KX
T is the change in shear stress intensity factor KT between point

1 and X and ∆a1X = a1 − aX is the change in contact size between the minimum of the
steady-state cycle and a general loading point X along the steady-state trajectory. KX

N is
the normal stress intensity factor at the general load point X. The approximate size of the
slip zone at a general point X, while unloading from point 2 to point 1 during steady-state
regime, is given by

w2X =
∆K2X

T

fKX
N

− ∆a2X

2
, (38)

where ∆K2X
T = K2

T −KX
T is the change in stress intensity factors KT and ∆a1X = a1 − aX

is the change in contact size between the maximum of the steady-state cycle and a general
loading point X along the steady-state trajectory.

Figure 7 shows the slip-stick behaviour during steady-state for an example Hertzian
contact during steady-state. The permanent stick zone is given by the analytical description
introduced in this paper and the evolving size of the slip zones is predicted asymptotically.
As there does not exist any analytical solution for the evolving slip zones in the presence of
bulk tension, the asymptotic error can only be estimated based on the maximum extent of
the slip zones as the extremes of the loading cycle are approached. From [13] we know that
for a varying P -Q problem the error for the asymptotic estimation of the slip zone extent
remains smaller than 10% for our loading parameters. We refrain from further assessing the
absolute or relative error between asymptotic or analytical solution for the plotted example as
accuracy of the solution will vary significantly for different loading scenarios. The parameters
were deliberately chosen so as to make the qualitative evolution of the slip zone size most
visual, which strains the quantitative accuracy of the asymptotic solution.
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Figure 7: Contact and stick zone sizes based on analytical and asymptotic prediction for a
Hertzian contact

The contact edge behaviour is calculated by the contact law, given in equation (24),
and the normal force, P , is assumed to vary linearly in a triangular waveform. The per-
manent stick zone is given by equations (30) and (28). The evolving stick-slip boundaries
are estimated from equations (37) and (38). The solution enters the steady state when it
reaches load point 1 for the first time. At point 1+ the contact is fully adhered, where the
plus indicates the load state when one end of the loading path has just been passed and a
minus indicates the point when a change in sign of the loading increment is imminent. A
full loading cycle can then be described in four distinctive steps 1+ → 2− → 2+ → 1− → 1+.
As the load path approaches load point 2−, the material in contact outside the permanent
stick zone experiences forward slip at both ends of the contact. At point 2+ the contact
becomes fully adhered again. As the load trajectory leads back to point 1− surface particles
experience slip in the reverse direction so that when load point 1− is reached the material
within the slip region arrives at its original location where it left from at load point 1+.
This process repeats itself every loading cycle so that potentially severe fretting damage is
accumulated in the slip regions of an incomplete contact.

5 Conclusions

A simple set of results for obtaining the steady-state stick zone - size and position - for
half-plane contacts, avoiding the complication of the marching in time procedure, has been
set out. The results are independent of the indenter profile outside of the permanent stick
zone. When the permanent stick zone and the contact law are known, the maximum extent
of the slip region at either end of the contact is also effectively established. The findings are
applied to a Hertzian contact and simple algebraic expressions are presented. We note that
there is a striking similarity between proportional and sequential loading when applying the
analytical procedure presented for obtaining a steady-state stick zone. Lastly, an asymptotic
procedure is applied to the problem. It provides an approximate solution for the marching in
time procedure, and is particularly attractive when the contact law is unknown or needlessly
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difficult to obtain. The solutions are applied to a Hertzian contact and, at the end points of
the load cycle, a comparison with the analytical results is given.
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[7] Jäger, J. 1998, A new principle in contact mechanics, J. Tribology, vol. 120: pp. 677-684.

[8] Ciavarella, M., 1998, The generalised Cattaneo partial slip plane contact problem, Part
I theory, Part II examples, Int. J. Solids Struct., vol. 35: pp. 2349-2378.

[9] Barber, J.R. , Davies, M., Hills, D.A. 2011, Frictional elastic contact with periodic
loading, Int. J. Solids Struct., vol. 48: pp. 2041-2047.

[10] Hills, D.A., Davies, M., Barber, J.R., 2011, An incremental formulation for half-plane
contact problems subject to varying normal load, shear and tension, J. Strain Analysis,
vol. 46: pp. 4356-4443.

[11] Barber, J.R., 2010, Elasticity (third edition), (Springer, Dordrecht, Netherlands)

14



[12] Hills, D.A., Fleury, R.M.N., Dini, D. 2016, Partial slip incomplete contacts under con-
stant normal load and subject to periodic loading, Int. J. Mech. Sci., vol. 108-109: pp.
115-221

[13] Fleury, R.M.N. , Hills, D.A., Ramesh, R., Barber, J.R. 2017, Incomplete contacts in
partial slip subject to varying normal and shear loading, and their representation by
asymptotes, Int. J. Mech. Phys. Solids, vol. 99: pp. 178-191.

15


	1 Introduction
	2 Steady-state slip behaviour
	2.1 Partial solution

	3 Application - Hertzian contact
	4 Asymptotic representation
	5 Conclusions
	Bibliography

