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Abstract. In this work, the cyclic symmetry boundary condition between sectors of a ro-
tationally periodic structure are reformulated and the compatibility condition is imposed by
means of Lagrange multipliers. In the augmented system, the constraint matrix carries the de-
pendence on the nodal diameters (ND) whereas stiffness and mass matrices do not vary with
ND. The Dual assembly formulation is exploited in the computation of eigenvectors and eigen-
values using a Preconditioned Projected Arnoldi Algorithm. The complex constraint matrix
is used to build a projection operator, which imposes the compatibility constraint between the
left and right side of the periodic geometry. Because the complex constraint matrix has or-
thogonal rows, the projector operator is easily assembled without the need of matrix inversion.
The explicit factorization of the projected stiffness matrix is not required since Preconditioned
Conjugated Gradient algorithm is used to solve the linear system during the inverse Arnoldi
iteration step. Consequently, all ND share the same preconditioner reducing the global cost
of eigenpairs computation, especially when multiple ND solutions are required. Five different
preconditioners are tested to evaluate the numerical scalability of the linear solution: Identity,
Projected Incomplete Chosleky, Projected Cholesky, Incomplete Cholesky and Cholesky. The
Preconditioned Projected Arnoldi Algorithm is implemented in Python using the Scipy library
which provides a wrapper for the Implicity Restarted Arnoldi method implemented in ARPACK.
The projection and preconditioner steps are carried-out by Scipy sparse linear operator. The
method is applied in 2D and 3D finite element models. The preconditioners studied can dramat-
ically reduce the number of iterations when compared to CG without preconditioning. The full
Cholesky preconditioner is on average 8 times faster than the identity precondicioner in the 2D,
whereas it is approximately 16 faster in the 3D case. The factorizing is performed only once,
and its computational cost can be divided among the different NDs, which makes the method
especially advantageous for geometries with a large number of sectors.
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1 INTRODUCTION

Free vibration analysis plays an important role in understanding the dynamics of structures.
It provides the natural frequencies which must be identified in order to avoid catastrophic fail-
ures due to resonances. Moreover, eigenmodes can be used to reduce the number of degrees
of freedom by using Reduced Order Models (ROM) such as Craig-Bampton [1], Dual-Craig-
Bampton [2], Rubin [3], among others. Despite its advantages, full eigenanalysis is very costly,
which means that in many cases only the modes related to the lowest frequencies are relevant
for practical problems. Therefore, Lanczos [4], and implicit restarted Arnoldi algorithms [5] are
often used as eigensolvers due to their efficiency. The major cost of the algorithms mentioned
lies in the inverse iteration, where the solution of a linear system is required.

When structures such as turbines, propellers, and gears are analysed, the property of rota-
tional periodic symmetry is often utilized, reducing the computational cost of the linear system
as well as the memory required to store the system matrices. Figure 1 shows a cyclic structure
with the highlighted reference sector used for analyzing the whole geometry. In such cases, a
Discrete Fourier Transform is applied in the equation of motion and in the compatibility con-
dition between neighbors, which reformulates the problem in terms of harmonic indices. The
speed-up is achieved by means of a harmonic decoupling among sectors when imposing the pe-
riodic condition by eliminating the constrained degrees of freedom, namely, primal assembly.
In the work developed in[6], the cyclic symmetry is imposed by complex constraints relating
the left to the right side. Considering a periodic structure composed of N sectors, which has θ
as the sector angle, the classical cyclic boundary condition creates approximately N/2 different
systems of equation to be solved independently. The number of variables is not changed by
the harmonic transformation, because the transformed system has complex degrees of freedom.
Therefore, the cyclic symmetry should not be understood as a reduction technique, since it is
only a transformation operation. However, the decoupling provided by the harmonic decompo-
sition results in the ability of solving independent problems for a given set of harmonic indices,
also known as Nodal Diameter (ND). If cyclic symmetry is considered for ROM, not only a
subset of modes must be selected but also a subset of nodal diameters. This is usually done by
analyzing the possible excitations, using the Campbell diagram or SAFE diagram, see [7].

In this paper, the primal and dual assembly of cyclic constraints are presented using a sub-
structuring framework and applied to the computation of the eigen-pairs of a cyclic structure.
In the dual formulation, the cyclic constraints are described with a complex constraint matrix
thereby rendering the system matrices, namely stiffness, and mass, unaffected. Due to the hy-
brid nature of the eigen-value problem in the dual formulation (displacements and Lagrange
multipliers), the conventional eigen-solvers are not suitable. Therefore, a modified version of
Projected Arnoldi algorithm is employed to efficiently solve the dual cyclic formulation. The
novel approach introduces a preconditioning step in the inverse iteration of the Arnoldi process,
which uses the reference sector without constraints. Five different preconditioners are tested to
evaluate the numerical scalability of the linear solution, namely: Identity, Projected Incomplete
Chosleky, Projected Cholesky, Incomplete Cholesky and Cholesky.

In the remaining sections the classical cyclic symmetry is formally introduced and the dual
formulation is presented. The projected Arnoldi method is described, eigen-analysis is per-
formed using the complex cyclic constraints and its projection operator. Three different Finite
element test-cases are presented in order to show the application of the new formulation.
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2 Classical Cyclic Symmetry Formulation

In this section, the classical theory behind cyclic symmetry boundary condition is summa-
rized. Let us consider a geometry composed of N identical sectors, as shown in the Figure 1. If
each sector has its own local coordinate system and no mistuning is considered, the equation of
motion together with the compatibility constraint can be written as:

Müs +Kus = f s + gs s = 1, ..., N

Tusl = us+1
r

Tgsl = −gs+1
r

(1)

where M and K are the mass and stiffness matrices respectively, f is the external force vector,
g is the connecting forces among neighbors, and superscript s represents the index of a sector.
The second expression in (1) represents the compatibility condition among sectors, where T is
a rotation matrix, and the subscripts l and r represent the interface dofs of the left and right
respectively.

Figure 1: Cyclic Structure and the highlighted reference sector.

It is important to notice that given the choice of local coordinate system, the stiffness and
mass matrices are the same for all sectors, however the transformation matrix T is required
to define a proper compatibility condition. Applying a Discrete Fourier Transform in space
{F : us → un |

∑N
s=1 u

se−jnθs} in (1) and rewriting the displacement solution, interface
force and external forces in terms of Fourier Series:

us =
1

N̄

N̄∑
n=0

unejnθs

gs =
1

N̄

N̄∑
n=0

gnejnθs

f s =
1

N̄

N̄∑
n=0

fnejnθs

(2)
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where j =
√
−1 is the imaginary unit, θ = 2π

N
is the sector angle, n is the nodal diameter index,

and N̄ is the largest nodal diameter index such that:

N̄ =
N

2
− 1 if N is even

N̄ =
N − 1

2
if N is odd

(3)

equation (1) becomes (4).

Mün +Kun = fn + gn n = 1, ..., N̄

Tunl = un+1
r = unr e

jnθ

Tgnl = −gn+1
r = −gnr ejnθ

(4)

If a permutation matrix is applied in the displacement degrees of freedom of a sector such
that one defines a block vector u = [ur, ul, ui], where the indices r, l and i are the right, left and
interior dofs respectively, equation (4) can be rewritten using block matrices:Mrr Mrl Mri

Mlr Mll Mli

Mir Mil Mii

ünrünl
üni

+

Krr Krl Kri

Klr Kll Kli

Kir Kil Kii

unrunl
uni

 =

fnrfnl
fni

+

gnrgnl
gni

 (5)

Classically, the left degrees of freedom are removed by replacing the harmonic compatibility
presented in equation (4) into equation (5):

[
Mrr + TMllT

T + ejnθMrlT
T + e−jnθTMlr Mri + e−jnθTMli

Mir + ejnθMilT
T Mii

] [
ünr
üni

]
+[

Krr + TKllT
T + ejnθKrlT

T + e−jnθTKlr Kri + e−jnθTKli

Kir + ejnθKilT
T Kii

] [
unr
uni

]
=

[
fnr + e−jnθTfnl

fi

]
(6)

Equation (6) is the constrained equation of motion, which contains only the right and interior
degrees of freedom. Using the property TT T = I , the elimination process can be carried out
by defining a complex matrix Ln which lies in the null space of the constraints.

Ln =

 I 0
ejnθT T 0

0 I

 (7)

Therefore, the primal assembly of cyclic symmetry can be written using a substructuring
framework as presented in [8]:

Mnü
n
primal +Knu

n
primal = LHn f

n n = 1, ..., N̄ (8)

where Mn ≡ (LHnMLn) and Kn ≡ (LHnKLn), and the superscript H represents the adjoint
matrix. It can be readily verified that (8) leads to the form (6).

For free vibration problems, one sets fn = 0 and unprimal = φnprimale
ωt, which leads to the

generalized eigenvalue problem:

[Kn − ω2Mn]φnprimal = 0 n = 1, ..., N̄ (9)
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where the subscript n represents the dependency on the nodal diameter, φnprimal is a complex
eigenvector, and Kn and Mn are Hermitian matrices. If the full set of eigenvector is required,
all nodal diameter indices in (9) must be evaluated.

3 Dual Cyclic Symmetry Formulation

The classical treatment of cyclic symmetry formulation modifies the system operator, namely
stiffness and mass matrices, by means of the primal assembly operator Ln as shown above. This
results in a set of unique variables defined as uprimal. In this section, the dual formulation of (4) is
presented. First, let us define two Boolean operators to extract ‘left’ and ‘right’ dofs as classical
FETI methods [9].

ul = Blu

ur = Bru
(10)

For the re-arranged displacement vector u = [ur, ul, ui] the Boolean operators are defined
by Br = [I 0 0] and Bl = [0 I 0]. Rewritting the compatibility constraint in (4) by using the
Boolean definition in (10):

Cnu = [Br − e−jnθTBl]u = 0 (11)

where Cn is a linear complex cyclic constraint operator. It is easy to show that LHn C
H
n = 0.

Therefore, a Lagrange multiplier must be introduced in the equation of motion in order to
satisfy the compatibility constraint, such that:

Mün +Kun = fn − CH
n λ

n n = 1, ..., N̄

Cnu
n = 0

(12)

Or in matrix notation:[
M 0
0 0

] [
ün

λn

]
+

[
K CH

n

Cn 0

] [
un

λn

]
=

[
fn

0

]
n = 1, ..., N̄ (13)

where CH
n is the adjoint matrix of the cyclic constraint operator.

The above expression is the dual assembly formulation for cyclic symmetry boundary con-
dition. This equation contains not only displacement dofs but also Lagrange multipliers to
enforced continuity among sectors. Clearly, this results in a system which contains more un-
knowns than the formulation in (8), however the stiffness and mass matrices do not depend on
the nodal diameter n. Therefore, this property can be exploited using dual Schur complement
solvers such as described in [10]. A similar technique for cyclic problems was already applied in
the work developed in [11]. However, in [11] the Lagrange multipliers are connected to sectors
as substructures, whereas in this work, λn is defined in the harmonic space. The novel approach
can be seen as a decoupling of the interface displacement and forces generated among neigh-
boring sectors. Besides that, the formulation gives the explicit harmonic gap, namely Cnun,
which can be useful when the interface connection between sector is nonlinear.
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3.1 Projected Arnoldi for Cyclic Symmetry Modal Analysis

The free vibration analysis of the system (13) results in the following hybrid generalized
eigenvalue problem: [

K CH
n

Cn 0

] [
φ′u
φλ

]
= ω2

[
M 0
0 0

] [
φ′u1
φλ

]
(14)

The dimension of the above problem is nc+ndofs, where nc is the number of cyclic symmetry
constraints, and ndofs is the total number of dofs in the reference sector. The eigenpair solutions
(ωi, [φ

′
ui
, φλi ]) have the form:

(
ωu1 ,

[
φ′u1
φλ1

])
, ...,

(
ωundofs

,

[
φ′undofs

φλndofs

])
,

(
+∞,

[
0

φλ(ndofs+1)

])
, ...,

(
+∞,

[
0

φλ(ndofs+nc)

])
(15)

Note that, the eigenvector φ′ui lies in the null space of the complex cyclic symmetry constraint
Cnφ

′
ui

= 0. In [12] some techniques are presented to solve the constrained eigenvalue problem
presented in (14) , but it does not explore the structure of the problem to accelerate the inverse
iteration of the eigen-solver. In order to solve the eigenvalue problem efficiently and profit from
the independence of stiffness and mass matrices of the nodal diameter n, a constrained Krylov
subspace is built based on the complex cyclic constraint operator, see [13]. The Krylov matrix
for the generalized eigenvalue problem without constraints is defined as:

Vm = [b, Db, D2b, ... , Dm−1b] (16)

whereD ≡ (K−σM)−1M , which is the inverse shift operator such thatD : Rn → Rn, b ∈ Rn.
When a constraint h(b) = 0 such that h : Rn → Rnc is defined, a Krylov basis vector b′ must
lie in the set of admissible vectors, mathematically Ω = {b′ ∈ Rn | h(b′) = 0} as represented
in Figure 2. Thus, the constrained Krylov matrix has the form:

V c
m = [b′, (Db′)′, (D2b′)′, ... , (Dm−1b′)′] (17)

Figure 2: Vectors b and b′ to build constrained Krylov subspace.

In the case of cyclic symmetry, one has a linear constraint, defined by Cnu = 0. One can
write a projection operation Pn into the Null(Cn) such that Pn : b → b′, where the constraint
Cnb

′ = 0 always holds. The projection matrix is explicitly written as:

Pn = I − CH
n (CnC

H
n )−1Cn (18)
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where the subscript n refers to the nodal diameter dependency in the constraint matrix Cn. It
is easy to show that (CnC

H
n )−1 = 1

2
I , therefore the projection matrix can be written without

matrix inversion as shown below:

Pn =

I 0 0
0 I 0
0 0 I

− 1

2

 I −e−jnθT 0
−ejnθT T I 0

0 0 0

 (19)

The generalized constrained eigenvalue problem (14) can be rewritten as:

Kφ′u + CH
n φλ =ω2Mφ′u (20)

where φ′u is a vector which respects the cyclic symmetry constraint. If one projects equation
(20) in the feasible space using PH

n and uses the relation φ′u = Pnφu one finally derives the
projected eigenvalue problem:

PH
n KPnφu = ω2PH

n MPnφu (21)

where φu ∈ Rn. Therefore a projected Arnoldi algorithm can be used to build the constrained
orthonormal Krylov bases vectors. The projected Arnoldi method is exploited in [14] for updat-
ing eigenvalues in nonlinear dynamic problems. The procedure is summarized in Algorithm 1.

Algorithm 1 Projected Arnoldi Iteration
• Parameters: K,M,Pn and nint.

1: Initialization
Compute MP

n = PH
n MPn and KP

n = PH
n KPn

Start with an arbitrary vector φ0
u and β0 = 0

2: First step iteration
Compute a projected unitary vector v1

n = MP
n φ

0
u

||φ0u||Mp
n

Solve the static-like problem KP
n φ̂

1
u = v1

n

Compute α1 = φ̂1T
u v

1
n

Compute a new orthogonal constrained Krylov vector φu1 = φ̂1
u − α1v1

n

3: For j = 2, ..., nint
compute βj = ||φ(j−1)

u ||Mp
n

if βj 6= 0 then compute vjn = MP
n φ

(j−1)
u /βj

Solve the static like problem KP
n φ̂

j
u = vjn

Compute αj = φ̂jTu v
j
n

Compute a new constrained Krylov vector φj+1 = φ̂ju − αjvjn − βjv
(j−1)
n

The bottleneck of Algorithm (1) is the solution of the singular linear system KP
n φ̂

j
u = vjn. In

this work, the linear system is solved by a Preconditioned Conjugate Gradient (PCG) algorithm.
The preconditioner K̄P

n is an estimation of the generalized pseudoinverse of (KP
n )−1. A set of

preconditioners are constructed such that, they can be reutilized for all nodal diameters. In this
paper, 5 different preconditioners are studied:

• Identity : I

• Incomplete Cholesky : K̂−1
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• Complete Cholesky : K−1

• Projected Incomplete Cholesky : PnK̂−1Pn

• Projected Cholesky : PnK−1Pn

4 Application Examples

The Preconditioned Projected Arnoldi Algorithm is implemented in Python using the Scipy
[15] sparse linear algebra library, which provides a wrapper for the Implicity Restarted Arnoldi
(IRA) method implemented in ARPACK. The projection and preconditioner steps are carried-
out by Scipy sparse linear operator. Three examples are considered to illustrate the algorithm
proposed by this paper. In all cases, structural steel property is used (E = 210GPa, ν = 0.3
and = 7500Kg/m3). The PCG tolerance is set to 1.0−10 and maximum Arnoldi iterations nint
is set to 10 times the number of eigenpairs required. For all test-cases, the first 20 modes are
computed for all possible nodal diameters.

The first example, named case A, consists of a 2D mesh, with plane stress triangle elements
with 1m of thickness. The number of displacement dofs of the reference sector is 266, number
of cyclic constraints is 14, and the whole geometry consists of 8 sectors. Table 1 shows for all
nodal diameters the number of average iterations took by the PCG depending on the choice of
the preconditioner. The average iterations is measured by the number of linear operator calls
divided by the predefined number of modes to be computed by the IRA algorithm. Conse-
quently, the average is measuring the overall performance of the eigensolver and not only the
PCG performance. Figure 3 shows the first three modal families for nodal diameter 0,1 and 2.

Preconditioner I K̂−1 K−1 PnK̂
−1Pn PnK

−1Pn
n = 0 165.64 42.77 18.95 42.26 18.42
n = 1 163.33 45.31 20 45.41 20.00
n = 2 162.48 46.30 20 46.13 19.97
n = 3 161.77 47.36 19.99 47.30 19.98

Table 1: Average PCG iterations per mode for case A.

Preconditioner I K̂−1 K−1 PnK̂
−1Pn PnK

−1Pn
n = 0 491.08 95.35 29.92 94.89 29.95
n = 1 485.56 166.56 33.65 167.02 33.54
n = 2 481.02 175.24 33.78 174.62 33.76
n = 3 474.08 201.08 34.29 201.59 34.27

Table 2: Average PCG iterations per mode for case B.
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Figure 3: Mode shapes for case A.

The two remaining test cases, B and C, are both 3D Finite Element Models with 1596 and
1467 degrees of freedom respectively. Case B has a simple geometry composed by 8 sector,
with 86 cyclic constraints, and the mesh contains only linear hexa elements. Figure 4 shows
the first three modes for three nodal diameters and Table 2 summarizes the number of average
iterations per mode using the five preconditioners. Case C is composed by tetra elements, 153
cyclic constraints, and it has a more realistic geometry with 24 sector, which resembles a blade-
disk geometry. Figure 5 shows the first 3 modes for nodal diameter 0,1, and 2 for the case
C. Table 3 presents the number of iteration by the PCG solver. It is clear that for all cases,
the projection operation in the preconditioners, PH

n K
−1Pn and PH

n K̂
−1Pn does not increase

the performance of the PCG algorithm. Therefore, they must be avoid due to the additional
computational cost. For case A and B, the precondition performance is almost constant with the
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nodal diameters, whereas in the case C it is possible to see some discrepancies. For instance,
the nodal diameter 1 and 4 converged with less than 81 iteration whereas n = 2 and n = 3
took more than 350 iterations to converge. This behavior can possibly be explained by the
differences between free vibration modes without and with cyclic symmetry. If the complex
cyclic symmetry constraint does not affect much the free vibration of the reference sector, then
K−1 will be a good estimation of (PH

n KPn)−1. Physically, this means that the projected and
free modes are almost identical. This fact shows that finding efficient preconditioners for all
nodal diameter indices remains a challenge. However, it might be possible to define a family of
preconditioners which a more suitable for specific subsets of ND.

Figure 4: Mode shapes for case B.
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Figure 5: Mode shapes for case C.
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Preconditioner I K̂−1 K−1 PnK̂
−1Pn PnK

−1Pn
n = 0 1676.8 568.3 526.4 568.0 526.4
n = 1 1438.3 354.6 68.6 354.9 300.2
n = 2 1421.8 409.1 352.2 360.1 303.5
n = 3 1610.8 137.8 356.8 367.1 76.1
n = 4 1371.3 142.7 80.3 142.0 310.4
n = 5 1344.0 156.5 81.8 155.3 81.7
n = 6 1323.4 162.4 86.4 163.4 86.7
n = 7 1307.1 170.9 89.3 171.1 89.4
n = 8 1295.0 178.3 91.0 178.6 90.7
n = 9 1286.1 176.8 90.9 176.8 90.3
n = 10 1272.0 182.5 92.8 181.7 92.8
n = 11 1268.7 184.4 93.0 182.5 92.9
n = 12 1266.9 179.9 92.6 180.7 92.7

Table 3: Average PCG iterations per mode for case C.

5 CONCLUSIONS

The cyclic symmetry constraints are presented using a substructuring framework, where pri-
mal and dual systems are formulated. These two approaches can be exploited and lead to dif-
ferent eigen-solvers strategies. The primal assembly formulation modifies the reference sector
stiffness and mass matrices, which fully decouples the cyclic sectors by means of the unique set
of primal variables. The N̄ harmonic problems may be solved independently, but the similarity
between the harmonic systems and the reference sector is usually not explored. On the other
hand, the dual assembly formulation leads to a singular hybrid system of equations with the
displacements and the Lagrange multipliers. In this case, the reference sector matrices, K and
M are retained unchanged, whereas the complex cyclic constraint depends on the nodal diam-
eter. Despite the singularity, the structure of the dual formulation allows to build a projected
generalized eigenvalue problem. Using this technique, one can utilize the stiffness matrix of
the reference sector, with some variations, as an efficient preconditioner. A total of five precon-
ditioners namely, Identity (I), Incomplete Cholesky (IC), Complete Cholesky (CC), Projected
Incomplete Cholesky (PIC) and Projected Cholesky (PC) were implemented and tested. The
projected versions, PCI and PC, added unnecessary computational cost since they do not reduce
the number of iterations when compared to IC and CC. The Cholesky preconditioner performed
very well, where speed-ups could be seen in all developed test-cases when compared to pure
CG (identity preconditioner). In the 2D case, the complete Cholesky is around 8 times faster
than the identity preconditioner, whereas in the 3D case varies from 3 to 17 faster depending on
the ND index. This suggests that finding suitable preconditioner for all nodal diameters spec-
trum is very challenging. Besides that, it is important to notice that, the incomplete Cholesky
reveals an algorithmic trade-off with a less costly factorization, but more iterations in the PCG.
In the future, it is intended to compare the eigen-solvers’ computational efficiency for primal
and dual formulation with respect to the number of eigen-pairs required. Furthermore, the pro-
jected Arnoldi algorithm will be extended to deal with blade-disk mistuning and quasi-cyclic
geometries.
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